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ANALYSIS OF COVARIANCE FOR NONRANDOMIZED DATA

Charles E. Hall

Educational Testing Service

Abstract

The technique of analysis of covariance is examined for its relevance

to educational and psychological investigations. A study of the arithmetic

procedures, history, and statistical properties shows that, though the

concepts are relevant to many data collection designs, the customary calcu-

lations are often inappropriate. Some suggestions are made relevant to

altering the arithmetic procedures or the data collection design under

some common conditions encountered in educational and psychological studies.



ANALYSIS OF COVARIANCE FOR NONRANDOMIZED DATA

Charles E. Hall

Educational Testing Service

Considerable attention has been given lately to analysis of covariance,

particularly in educational research where several factors of factorial

design are fixed and some factors (or none) are randomized. The journal,

Biometrics, dedicated the September 1957 is3ue to the problem of analysis

of covariance. Recently,Lord (1967) presented the problems of this type

of analysis as a paradox, and Campbell and Erlebacher (1970) presented some

of the follies in use of the procedure. It is the intention of this paper

to review the purpose, underlying assumptions, and calculation procedures

and to arrive at a means of handling analysis of covariance when the

classical assumptions are not met.

Definition of the Problem

As expressed by Cochran (1957, p. 262), a covariate "is a measurement

taken on each experimental unit before treatments are applied, which is

thought to predict to some degree the final response...on that unit." In

experimentation, a covariate is usually a measurement taken of some factor

which influences the experiment but cannot be controlled.

The analysis of covariance is a statistical technique for eliminating

the effect of the covariate on the response variate(s) being studied.

The mathematics of the analysis of covariance is somewhat complex and requires

using the figures shown. in Table 1. In the table, S denotes Sum, H, Hypothesis,
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E, errors, T, totals, Y, the response variate, X, the covariate, and an *

denotes an "adjusted" sum of squares. (3 denotes the various regression

coefficients.

Table 1

Various Sums of Squares Used in Analysis of Covariance

Source Variate Cross-product Covariate
Regression
Coefficient

Hypothesis S
H

(y
2

) S
H

(xy) s
H

(x2) R
H

Errors S
E

(y
2

) S
E

(xy) S
E

(x
2

) RE

Total S
T

(y
2

) S
T

(xy) sT
(x2) aT

As is customary ST = SE + S
H

The calculations usually proceed as follows:

First calculate the adjusted sum of squares for totals

designating

ST (Y
2

) = 5T (Y
2

) ST (xY)/5 T (x
2

)

T
= S

T
(xy)/S

T
(x2)

Then calculate the adjusted sum of squares for errors

designating

SE (Y
2

) = 5E (Y
2

) 5
2

(xY)/5E (x
2

)



Then find
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* * *
SH (y

2
) = ST (y

2
) - SE (y

2
)

aH = SH (xY) /SH (x2)

is not calculated ordinarily.

The appropriate statistical test is then formed,

F = const. SH (y2) /SE (y 2 ),

the probability of F found and a decision made.

This method is espoused by Cochran (1957), Scheffe (1959), Rao (1965),

and most others and will be called here the classical method. The method

was apparently devised by Wishart and Sanders (1935). It was first reported

by Fisher (1932).

Mathematics

In order to examine the mathematics of covariance analysis, we shall

use the method of fitting constants as devised by Fisher (1932) and consoli-

dated by Yates (1933) and Wilks (1938).

Let us use as an example a design with two groups and a covariate.

We construct two pseudovariables (dummy parameters or design variables),

one which is 1 for all observations and serves to extract the grand mean

(constant term) from the observations, and one which is +1 for all observations

in the first group and -1 for all observations in the second group and serves

to produce the calculations for the t test.
1

The covariate will be x and

1Wilks would have used three pseudovariables, the constant term, and
two variables for group membership. The two group membership variables were
set up as 1 for the instant group and 0 for all other groups.

0
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the variate y . Each observation vector then consists of

(1, x, ±1, y) .

The sum of the cross-products matrix will then be
2

A =

N Ex Eyn
1

- n
2

Ex
2

Ex
1

- Ex
2

Exy

n
1

+ n
2 EY1 EY2

(symmetric) Ey
2

We will assume orthogonality of design to make the discussion easier;

this requires n1 - n2 = 0. Constant fitting is usually done by Gaussian

reduction (sweep out). Constants are usually fitted in the order in which

they appear in the observation vector only to simplify notation.

To fit the grand mean to the second row of A (sweep out p), form

the regression coefficient Ex/n and make the following calculations

Ex
2

- (Ex/n) (Ex) ; (Ex1 - Ex2) - (Ex/n) (n1 - n2) , and

Exy - (Ex/n) Ey

The reduction process of any entry aij of A for any constant k

is aii - (aki/akk) (ask) . It is obvious that the regression coefficient

2
Notation conventions: Subscripts denote sample 1 or sample 2, and lack

of subscripts denotes all observations. For example N = n1 + n
2

and Exy
1

denotes the sum of cross-products over group 1.
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for variable k on variable i is aki/akk .
For later use we will show

the sweep of u from all of A giving

0 0 0

0 Ex
2

- (Ex)
2
/N Ex

1
- Ex Exy - ExEy/N

B =
2

0 n
1
+ n

2 EY1
Ey2

0 (symmetric) Ey2 (EY)
2
/N

After sweeping the second row and column of B we arrive at a matrix

C which has relevant entries

C33 = (n + n
2

) - (Ex
1

- Ex 2'
\2/(Ex2 (Ex)2/N)

C34 = (Eyi - Ey2) - [(Exi - Ex2)/(Ex
2

- (Ex)
2 /N)][Exy - ExEy/N]

2 % ,

C44 = ;

,

Ey - (Ey)
2 /N) - (Exy - ExEy/N)

2
/kEx

2
- (Ex)

2
/N) .

With sufficient labor, it can be seen that

s=ST c44

* 2
SS
H

= C
34

/C
33

and (2,

T
= b

24
/b

22
.

After sweeping row 3 out of C, what remains in the (4,4) position is

s
*

(y
2

) .

The constant $
E

does not appear in this calculation sequence but

can be calculated as follows.

7



Sweep row 3 of B out of rows 2 and 4 giving a matrix D with elements

.
.,,

d
22

= (Ex
2

- (Ex)
2
/N) - (Ex1

- Ex
2

)

2
/ln1

n
2

)

c124
xy - -(E ExEy/N) [(Ex1 - Ex

2
)/N][Ey1

Ey2
]

Without too much labor it can be shown that

E
= d

24
/d

22
.

Statistical Estimation of Regression Coefficients

The usual design restriction placed on the covariate is that it be

"unaffected by treatment." This statement has led to several practices.

One is that of taking covariate measurements before experimental treatments

are applied to the groups. When this is done it is expected that the subjects

will be assigned at random to treatment groups. This will leave Ex1

approximately equal to Ex2 so that Ex1 - Ex2 = e and e=0 except for

random fluctuations. When subjects are assigned at random to treatments it

is safe to assume that covariate values are distributed at random to

treatments also. This leads Cochran (1957,p. 264) to state that "it is

important to verify that treatments have had no effect on x [i.e., the

covariate]. This is obviously true when the x's were measured before

treatments were applied." A caution is taken by the observation that

Cochran expects subjects to be assigned at random to treatments. When

subjects are not randomly assigned it is obvious that covariate values are

not randomly assigned either and that covariate values may be affected by

factors which influence the assignment of subjects to treatments.

8
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Another practice is shat of choosing groups which are pairwise matched

on the covariate and assigning the members of the pairs to the two groups at

random. This will give Ex]. - Ex2 = E = 0 exactly.

The effect of having covariates "unaffected by treatment" can be seen

quite readily when we examine the arithmetiL of the classical solution. The

adjusted estimates for treatment effect
3 are the regression coefficients

C34/C33 used for sweeping row 3 out of row 4 of C. Writing this using

Ex
1

- Ex
2

= E gives us

C34 (EY1 Ey2) - E(Exy - ExEy/N)/(Ex2 - (Ex)2/N)

C33
,, , .

(n1 + n2) -- E
2

E2 /(Ex2 - (Ex)
2
/NJ

We can see that as E .4- 0 the adjusted estimate of treatment effect approaches

the unadjusted estimate of treatment effect. That is, the effect of the covari-

ate on the treatment means and treatment sum of squares becomes negligible as

the difference between covariate means becomes small.

The error sum of squares can be shown to be

;y2 -
Ey

2
(Exy - ExEy/N)

2

N Ex
2

- (Ex)
2
/N

[(EY1
Ey2) c(Exy- ExEy/N)/(Ex2 - (Ex)2 - (Ex)2/N)]2

(n1 n2) - c2/(Ex2 - (Ex)2/N)

or, using E throughout,

3These are not the ones usually reported, but they are the ones which
are used in the analysis.
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Ey -
2 (Ey)

2

Exy - + Exy -

2

Ex
2
Ey

21 n12
2

E(EY1
Ey2)

N

2
[(Eyi - Ey2) - e(Exy - ExEy/N)/(Ex2 - (Ex)

2
/N)]

N - 62/(Ex2 - (Ex)2/N)

As e 0 this expression approaches

2

Ey
2
- (Ey)

2
/N - (Ey

1
- Ey

2
)2 /N - (Exy

1
- Ex

1
Ey

1
/n

1
+ Exy

2
- Ex

2
Ey

2
/n

2
)

, ,2

which is the adjusted error term. Combining this information about the

adjusted error term with the above observation that the treatment sum of

squares is unaffected by a covariate with no difference between group

means, we come up with the familiar observation, "Covariance adjustment

reduces the sum of squares for treatment very little while reducing the

sum of squares for error considerably" (see Snedecor, 1956, p. 399). This

effect is also reflected in the common statement: covariance analysis is

used to reduce errors.
4

The effect can also be seen by comparing PI with k,

b
24 Exy - Exf,y/N

, ,,
b22 Ex

2
- kx)

2
/N

4This is another misstatement about analysis of covariance. The

"reduction of error variance" is no reduction at all; it is the elimination
of a portion of variance due to the covariate which has nothing to do with
treatment variation. The "reduction" of the so-called "error sum of squares,"
then, is only another step in obtaining the error sum of squares: there is no
"error sum of squares" until the covariate reduction has taken place.
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d
24

Exy - ExEy/N - (Exl - Ex2)(Eyi - Ey2)/N

E
=

d22
,2

22 Ex
2

- (Ex)
2
/N - (Exl - Ex2) /N

Exy - ExEy/N - e(Eyi Ey2)/N

Ex
2

- (Ex)
2
/N -

2
/N

As 0 , P.T converges to P.E . In short, since P.E estimates the

population regression coefficient, P.

T
estimates it also, but only if

is statistically null!

Difficulties with regression coefficients. Unfortunately, the above

figures somewhat obscure what is really happening in the relationship between

T
and P.

E
It is much easier to relate the two when P.

E
is written in

terms of deviations from sample means. Let SCPw denote the sum of cross-

products within samples and SS
w

be the pooled sum of squares within

samples.

Using SCPw to denote the sum of cross-products of variables within

groups it can be shown that

SCPw(x,y)

E SSw(x)

I3T

SCPw(x,y) + (Exl - Ex2)(Eyi Ey2)/N

SSw(x) + (Exl - Ex2)2/N

SCP
w

+ e(Ey
1
- Ey

2
)/N

SCP
w

+
2
/N

This shows more clearly that as (Exl - Ex2) = e gets small and

vanishes, 13,2 approaches 13E . It also shows quite clearly that, since the



-10-

numerator contains e and the denominator contains may,
ST

may be unpre-

dictably different than
SE

when e is large.

These formulations show that the estimation of regression coefficients

is affected by the differences of covariate means among the groups.

Difficulties with contrasts. An obscure and possibly crucial event

happens to the entry C
33

in classical covariance analysis when the differ-

ence between covariate means is not null. When row 2 of B is swept out of

the matrix

. ,

C
33

= n
1
+ n

2
- (Ex

1
Ex

2
)

2
/(Ex

2
- (Ex)

2
/N)

.

= n
1
+ n

2
- e

2
/(Ex

2
- (Ex) /N) ,

which shows that C
33

is altered by the covariance adjustment when the

difference between covariate means is not zero.

This alteration is only a matter of scale on the dummy variable when

only two groups are involved, . When more than two groups are involved, the

matter becomes serious.

For the three-group problem with deviation contrasts, group sizes

n
1

, n
2

and n
3

, 333 is a submatrix.,

:

ni + n3 n
3

n3 n2 4. n3 .

After adjustment for the covariate, this submatrix becomes very complex

algebraically. The (1,1) entry is

n
1
+ n

3
- (Ex

1
- Ex4)

2
IN .

Cl



The (1,2) entry is

n
3

- (zx
1

- zx )(Zx
2

- Zx )/N

and the (2,2) entry is even worse. If the differences among the covariate

means are substantial, there isa substantial alteration of the contrasts

which one set out to test. The result of this a.Aeration is to produce

a new set of contrasts among means which are unknown to the statistician:

i.e., the mechanics of analysis produce a statistical test of unknown

origin. When the differences among covariate means are large, the actual

analysis may be very different from the one expected.

It is conceivable that serious alteration of contrasts could take place.

That is, suppose the statistician originally specified the deviation contrasts

among means as Y
1

- Y., Y
2

- Y., Y
3

- Y. (each group mean contrasted

with the grand mean), it is not inconceivable that the differences between

covariate means would alter these contrasts to something like 2 Yi - Y.,

Y
2

- Y. and Y
3
- 3/4 Y.

These arguments lead to the conclusion that classical covariance

analysis is not always applicable to all problems which are commonly

perceived as analysis of covariance. In fact, Cochran (1957, p. 264)

states: "The F - test of treatments against error for the x variate

[i.e., covariate] is helpful when there is doubt whether treatments have

had some effect on x." One can only conclude that if the covariate means

are dispersed significantly over treatments, then classical analysis of

covariance is inappropriate.

When subjects are not assigned at random to treatments. When subjects

are not assigned to treatments at random, either over the entire list of

subjects for the experiment or within blocks of subjects, the above arguments

show the danger of using classical analysis of covariance to determine the
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results of treatment. The author would prefer to describe this kind of

investigation as a survey and not as an experiment. The term "experiment,"

it seems, should be reserved for those investigations in which there is

an opportunity for the experimenter to assign subjects to treatments

randomly somewhere in the process of data collection. In educational

investigations random assignment rarely occurs anywhere in the process.

Teachers and students are almost never assigned to treatments at random and

schools are always chosen from a list of those which will cooperate.

When random assignment of subjects to treatments is not performed, there

is considerable likelihood that systematic differences between treatment

groups have occurred. Any data collection for covariates then should

certainly include F tests of covariate over the collection design to insure

that covariates have not been influenced by treatments or choice of treatment

groups. Cochran (1957, p. 264) suggests this even for randomized designs;

Snedecor (1956, p. 397) implies as much when he notes that "the means (on

the covariate)...differ little more than would be expected...."

What is one to do if it is apparent that the covariate means differ

from treatment group to treatment group? The author has searched the

literature of covariance analysis and no one seems to have come up with a

reasonable answer. Zelen (1957, p. 310) reacts to the problem in this way.

Still another use for covariance analysis as pointed out
by Bartlett (1936) is to adjust treatment effects for systematic
differences between experimental units in a non-random experiment.
In this situation if the effects of treatment differences disappear
after adjusting for initial differences, then one can conclude
that the treatments do not differ. However, if after adjusting
for initial differences among experimental units the treatment
differences still remain, then the conclusion that the treat-
ments actually differ is not necessarily a valid conclusion.
Although an exact fUnctional relationship between the dependent
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and independent variates may not be known, an approximate
relationship may be sufficient to adjust for the effects of non-
randomness. Thus, if differences among treatments do not
disappear after making such an adjustment, then we may conclude
(i) treatments actually differ or (ii) treatments do not differ,
but the functional relationship is not known to a sufficient
approximation to adjust adequately for the non-random nature of
the experiment. The conclusion that treatments actually differ
will only be valid if the explicit form of the adjustment makes
use of a known functional relationship between the dependent
and the independent variates.

The solution to the problem is stated in Zelen's last sentence. It

can be restated as "If you can't find a good regression coefficient you

don't have an analysis." Or: "If the analysis of covariance cannot provide

a good regression coefficient, you can't use it." Or: "Find a good

regression coefficient before you analyze."

When subjects are not assigned at random to treatments, the search for

a regression coefficient can pose a serious problem. To generate an appro-

priate regression coefficient one should fulfill the following requirements

1. The regression coefficient should be independent of experimental

data.

In classical analysis of covariance the independence is obtained

mathematically by partitioning total variance. Tests of experimental hypotheses

are generated from other independent partitions of the data. In some experi-

mental situations it may be necessary to collect data exclusively for obtain-

ing an appropriate regression coefficient.

2. The regression coefficient should be appropriate to the range of

data covered by the experiment.

15



A large percentage of regressions are curvilinear over the extremes

of the range of the data and if the experiment has a selected range

within the extremes, the correlation may be linear having one value within

the range of the experiment and other values in other ranges. A good

example would be the relationships between reading ability and age. a:2fore

the age of six it is nearly zero, after age 30 it may again be zero, but

between ages 6 and 18 the correlation may be linear and nearly .90.

3. The regression coefficient should be obtained from the same measures

as those used in the experiment.

This requirement should be self-explanatory.

These requirements make several points quite clear about using analysis

of covariance when the covariate is a pre-experiment measure of the criterion

variable.

(a) Classical analysis of covariance is an analysis of gains scores

if treatment groups are chosen at random or matched on the covariate. This

is because the regression between variate and covariate can be estimated

from the data at hand.

(b) Analysis of gains scores is an analysis of covariance with an

external regression coefficient.

(c) Analysis of difference scores is an analysis of covariance (or gains)

where the regression coefficient is assumed to be 1.0.

Finding the appropriate regression coefficient. There are numerous settings

where analysis of covariance is an inappropriate technique. The typical educa-

tional survey or "experiment" done without random assignment is one of these.

In these surveys there are techniques which can be used without completely

destroying the value of analytic procedures and probability statements even

though the techniques may not be rigorous.
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In an "experiment" where the covariate is a pre-treatment measurement

of the criterion variable and the treatment groups are at least representative

of some whole population (which can be defined without referring to the

criterion) it is possible to locate one very usable regression coefficient:

the test-retest reliability coefficient from test norms when the norms

have been obtained from the same population as used for the "experiment"

and the time lapse between test and retest is similar to that used in the

"experiment."

When test norms do not exist or test-retest reliabilities have not

been determined and if treatment groups represent some whole population,

the error regression coefficient is a reasonable substitute. Although it

has been known that error regression coefficients are inappropriate almost

since analysis of covariance was devised, the difference in probability of

F statements is rather small as Cochran (1957, p. 275) shows.

There are circumstances where regression coefficients must be designed

into the data collection. Consider a survey of a remedial program, say

reading, where all pupils who have less than a particular reading score are

subjected to a six-month remedial program. Reading scores are taken pre-

and post-treatment and the question is asked "What happened?" Without a

regression coefficient only descriptive statistics are available. The within-

treatment group regression coefficient is inappropriate because it would wipe

out gains if used. The nontreatment group regression coefficient is inappro-

priate because the range of scores has been truncated by removing the treat-

ment group. Any regression coefficient developed from the whole group is

5The pretest posttest regression would be a reliability problem if no
treatment had intervened.
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inappropriate because part of the group has been treated. About the only thing

to be done is to find a nearby school with the same kind of student body and

run the same testing schedule for the sake of finding a regression coefficient.

A similar problem exists in evaluating headstart-type programs. Here,

there may be no way of obtaining an appropriate regression coefficient

for several reasons.

(1) The headstart program may exhaust the population (say ghetto

dwellers) and no control group may exist. This makes it almost impossible

to do any comparative study at all.

(2) The testing materials may not have been normed, thereby eliminating

any comparison with a normative sample.

(3) Choosing a comparative group from another social stratum may be

unsatisfactory because of systematic differences in pre-treatment scores and

change in regression coefficient due to curvilinearity of regression in the

extreme range of the testing materials.

(1) Choosing a comparable sample in a nearby area and running the same

testing schedule to obtain a regression coefficient may be prohibitively

expensive.

Conclusion

The article by Lord (1967) has stirred considerable investigation into

this area of statistical analysis, so much so that the problem has become

known as Lord's Paradox. Much has been written to explain the apparent

paradox in analysis. It is this writer's opinion that there is no paradox;

there is only a misapplication of classical analysis of covariance procedure.

The primary function of sampling design in analysis of variance is to

obtain independent estimates of all the population parameters needed in a

statistical problem from one complex data collection. The purpose of this

18
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investigation is to show that the traditional collection procedure is

inadequate for estimating regression coefficients for the analysis of

covariance and change when subjects are not assigned to treatments at

random. Some suggestions have been made about compensating for this

inadequacy.

19
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